The biconjugate gradient method (BiCG) is one of the most popular short-term recurrence methods for solving non-symmetric linear systems of equations. The objective of this paper is to provide an efficient adaption of BiCG to parameterized linear systems. More precisely, we consider the problem of approximating the solution to $A(\mu) x(\mu) = b$ for many different values of the parameter $\mu$. Here we assume $A(\mu)$ is large, sparse, and nonsingular with a nonlinear dependence on $\mu$. Our method is based on a companion linearization derived from an accurate Chebyshev interpolation of $A(\mu)$ on the interval $[-a,a]$, $a \in \mathbb{R}$. The solution to the linearization is approximated in a preconditioned BiCG setting for shifted systems, where the Krylov basis matrix is formed once. This process leads to a short-term recurrence method, where one execution of the algorithm produces the approximation to $x(\mu)$ for many different values of the parameter $\mu \in [-a,a]$ simultaneously. In particular, this work proposes one algorithm which applies a shift-and-invert preconditioner exactly as well as an algorithm which applies the same preconditioner inexactly. The competitiveness of the algorithms are illustrated with large-scale problems arising from a finite element discretization of a Helmholtz equation with parameterized material coefficient. The software used in the simulations is publicly available online, and thus all our experiments are reproducible.
翻译:双二次曲线梯度法( BICG) 是解决非对称线性方程系统的最流行的短期直径重现方法之一。 本文的目的是为 BICG 提供对参数线性系统的有效调试。 更确切地说, 我们考虑的是, 在参数 $A( mu) x (\ mu) = b$ 的多种不同值中, 近似于 $A( mu) x (\ mu) = b$。 我们在这里假设 $A (\ mu) 是大、 稀薄、 非线性, 且非线性依赖 $\ mu$ 。 我们的方法基于来自准确的 Chebyshev 对 $ (\ mu) 线性系统进行匹配。 $[ a, a, $ 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 值, 等