A minimal perfect hash function (MPHF) maps a set $S$ of $n$ keys to the first $n$ integers without collisions. There is a lower bound of $n\log_2e-O(\log n)$ bits of space needed to represent an MPHF. A matching upper bound is obtained using the brute-force algorithm that tries random hash functions until stumbling on an MPHF and stores that function's seed. In expectation, $e^n\textrm{poly}(n)$ seeds need to be tested. The most space-efficient previous algorithms for constructing MPHFs all use such a brute-force approach as a basic building block. In this paper, we introduce ShockHash - Small, heavily overloaded cuckoo hash tables. ShockHash uses two hash functions $h_0$ and $h_1$, hoping for the existence of a function $f : S \rightarrow \{0,1\}$ such that $x \mapsto h_{f(x)}(x)$ is an MPHF on $S$. In graph terminology, ShockHash generates $n$-edge random graphs until stumbling on a pseudoforest - a graph where each component contains as many edges as nodes. Using cuckoo hashing, ShockHash then derives an MPHF from the pseudoforest in linear time. It uses a 1-bit retrieval data structure to store $f$ using $n + o(n)$ bits. By carefully analyzing the probability that a random graph is a pseudoforest, we show that ShockHash needs to try only $(e/2)^n\textrm{poly}(n)$ hash function seeds in expectation, reducing the space for storing the seed by roughly $n$ bits. This makes ShockHash almost a factor $2^n$ faster than brute-force, while maintaining the asymptotically optimal space consumption. An implementation within the RecSplit framework yields the currently most space efficient MPHFs, i.e., competing approaches need about two orders of magnitude more work to achieve the same space.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月4日
Arxiv
38+阅读 · 2021年8月31日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员