Error correcting codes (ECCs) are indispensable for reliable transmission in communication systems. The recent advancements in deep learning have catalyzed the exploration of ECC decoders based on neural networks. Among these, transformer-based neural decoders have achieved state-of-the-art decoding performance. In this paper, we propose a novel Cross-attention Message-Passing Transformer (CrossMPT), which shares key operational principles with conventional message-passing decoders. While conventional transformer-based decoders employ self-attention mechanism without distinguishing between the types of input vectors (i.e., magnitude and syndrome vectors), CrossMPT updates the two types of input vectors separately and iteratively using two masked cross-attention blocks. The mask matrices are determined by the code's parity-check matrix, which explicitly captures the irrelevant relationship between two input vectors. Our experimental results show that CrossMPT significantly outperforms existing neural network-based decoders for various code classes. Notably, CrossMPT achieves this decoding performance improvement, while significantly reducing the memory usage, complexity, inference time, and training time.
翻译:暂无翻译