A basic premise in graph signal processing (GSP) is that a graph encoding pairwise (anti-)correlations of the targeted signal as edge weights is exploited for graph filtering. However, existing fast graph sampling schemes are designed and tested only for positive graphs describing positive correlations. In this paper, we show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights. In response, we propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs. Specifically, given an empirical covariance data matrix $\bar{\bf{C}}$, we first learn a sparse inverse matrix (graph Laplacian) $\mathcal{L}$ corresponding to a signed graph $\mathcal{G}$. We define the eigenvectors of Laplacian $\mathcal{L}_B$ for a balanced signed graph $\mathcal{G}_B$ -- approximating $\mathcal{G}$ via edge weight augmentation -- as graph frequency components. Next, we choose samples to minimize the low-pass filter reconstruction error in two steps. We first align all Gershgorin disc left-ends of Laplacian $\mathcal{L}_B$ at smallest eigenvalue $\lambda_{\min}(\mathcal{L}_B)$ via similarity transform $\mathcal{L}_p = \S \mathcal{L}_B \S^{-1}$, leveraging a recent linear algebra theorem called Gershgorin disc perfect alignment (GDPA). We then perform sampling on $\mathcal{L}_p$ using a previous fast Gershgorin disc alignment sampling (GDAS) scheme. Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
翻译:图形信号处理( GSP) 的基本前提是, 平面信号处理( GSP) 的图形编码( ant-) 匹配( ant-) 用于图形过滤。 然而, 现有的快速图形抽样方案仅设计并测试描述正相关关系的正数。 在本文件中, 我们显示, 对于具有强烈内在反反正关系( GSP) 的数据集, 一个合适的图表包含正和负边权重。 作为回应, 我们提议一个在线时间签名的图形取样方法, 以均衡的已签名图表概念为中心 。 具体地说, 鉴于一个实验性的共同变量数据矩阵数据矩阵 $\ bar\ bf{ C\ $, 我们首先学习一个稀薄的垂直矩阵( Laplacecian) $\ mathcal{L} 。 我们定义了一个平衡的绝对数字 =% g=B =clational=tal mlational 。 我们选择了一种方法, 以平面的平面 $L\\\\\ massal dal=tal a destal deal deal deal squistration.