Identifying the functional networks underpinning indirectly observed processes poses an inverse problem for neurosciences or other fields. A solution of such inverse problems estimates as a first step the activity emerging within functional networks from EEG or MEG data. These EEG or MEG estimates are a direct reflect functional brain network activity with a temporal resolution that no other in vivo neuroimage may provide. A second step estimating functional connectivity from such activity pseudodata unveil the oscillatory brain networks that strongly correlate with all cognition and behavior. Simulations of such MEG or EEG inverse problem also reveal estimation errors of the functional connectivity determined by any of the state-of-the-art inverse solutions. We disclose a significant cause of estimation errors originating from misspecification of the functional network model incorporated into either inverse solution steps. We introduce the Bayesian identification of a Hidden Gaussian Graphical Spectral (HIGGS) model specifying such oscillatory brain networks model. In human EEG alpha rhythm simulations estimation errors measured as ROC performance do not surpass 2% in our HIGGS inverse solution and reach 20% in state-of-the-art methods. Macaque simultaneous EEG/ECoG recordings provide experimental confirmation for our inverse-solution with 1/3 more congruence according to Riemannian distances than state-of-the-art methods.
翻译:确定间接观测过程的功能网络是神经科学或其他领域的一个反向问题。这类反向问题的一个解决办法是作为第一步对来自EEG或MEG数据的职能网络中出现的活动进行估计。这些EEG或MEG估计数直接反映了功能性脑网络活动,其时间分辨率是其他神经神经模拟中无法提供的。第二个步骤是估计此类活动假数据的功能连接,揭开与所有认知和行为密切相关的血管大脑网络。在人类 EEG 或EEEG 模拟模拟中,以ROC的性能衡量的误差在我们的HIGGS最新反向解决方案中并不超过2%,我们披露了由于将功能网络模型混入任何反向解决方案步骤中的功能性网络模型错误的重大原因。我们采用了隐性高斯图形光谱模型(HIGGGS)模型的功能连接性连接性连接性关系。在人类 EGA节率模拟中,我们HIGGS逆向解决方案中的任何功能连接性连接性连接性误差。我们用1州/GC的正反向级记录方法提供了20 %。