We propose a new class of models for variable clustering called Asymptotic Independent block (AI-block) models, which defines population-level clusters based on the independence of the maxima of a multivariate stationary mixing random process among clusters. This class of models is identifiable, meaning that there exists a maximal element with a partial order between partitions, allowing for statistical inference. We also present an algorithm for recovering the clusters of variables without specifying the number of clusters \emph{a priori}. Our work provides some theoritical insights into the consistency of our algorithm, demonstrating that under certain conditions it can effectively identify clusters in the data with a computational complexity that is polynomial in the dimension. This implies that groups can be learned nonparametrically in which block maxima of a dependent process are only sub-asymptotic.
翻译:我们为可变分组提出了一个新的模式类别,称为Asymptistic Listital bull (AI-block) 模型,该模型根据各组间多变量固定混合随机进程的顶点的独立性来界定人口层次组群。该模型类别可以识别,这意味着存在一个最大元素,在分区之间有部分顺序,允许统计推理。我们还为恢复各变量组群提供了一种算法,而没有说明组群的数量。我们的工作为我们算法的一致性提供了一些理论性洞察,表明在某些条件下,它能够有效地识别数据中具有计算复杂性的组群,在维度上是多数值的。这意味着可以非对立的组群体学习,在其中,一个依赖过程的区块最大值只是次参数。