Offline reinforcement learning (RL) leverages previously collected data for policy optimization without any further active exploration. Despite the recent interest in this problem, its theoretical results in neural network function approximation settings remain elusive. In this paper, we study the statistical theory of offline RL with deep ReLU network function approximation. In particular, we establish the sample complexity of $n = \tilde{\mathcal{O}}( H^{4 + 4 \frac{d}{\alpha}} \kappa_{\mu}^{1 + \frac{d}{\alpha}} \epsilon^{-2 - 2\frac{d}{\alpha}} )$ for offline RL with deep ReLU networks, where $\kappa_{\mu}$ is a measure of distributional shift, {$H = (1-\gamma)^{-1}$ is the effective horizon length}, $d$ is the dimension of the state-action space, $\alpha$ is a (possibly fractional) smoothness parameter of the underlying Markov decision process (MDP), and $\epsilon$ is a user-specified error. Notably, our sample complexity holds under two novel considerations: the Besov dynamic closure and the correlated structure. While the Besov dynamic closure subsumes the dynamic conditions for offline RL in the prior works, the correlated structure renders the prior works of offline RL with general/neural network function approximation improper or inefficient {in long (effective) horizon problems}. To the best of our knowledge, this is the first theoretical characterization of the sample complexity of offline RL with deep neural network function approximation under the general Besov regularity condition that goes beyond {the linearity regime} in the traditional Reproducing Hilbert kernel spaces and Neural Tangent Kernels.


翻译:离线强化学习 (RL) 利用先前收集的优化政策的数据,而没有进一步积极探索 。 尽管最近对这一问题感兴趣, 但它在神经网络运行的理论结果仍然难以找到。 在本文中, 我们研究离线 RLL 的统计理论, 与深 ReLU 网络运行。 特别是, 我们建立 $ =\ tile\ mathcal{O} (( H ⁇ 4 + 4\\\ frac{ dalpha}\\ kapapala ⁇ _ mu ⁇ 1 +\ frac} (d- halphalpha} =\ eepsilon}-2 - 2\ frac{ d- halpha} 设置的神经网络的理论结果。 我们的离线 RLL 运行的常规运行规则系统运行最平稳的参数是 IMOGL IMFIL 的常规运行法 。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Reinforcement Learning with Almost Sure Constraints
Arxiv
0+阅读 · 2023年2月13日
Arxiv
65+阅读 · 2021年6月18日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员