We describe our work on inferring the degrees of freedom between mated parts in mechanical assemblies using deep learning on CAD representations. We train our model using a large dataset of real-world mechanical assemblies consisting of CAD parts and mates joining them together. We present methods for re-defining these mates to make them better reflect the motion of the assembly, as well as narrowing down the possible axes of motion. We also conduct a user study to create a motion-annotated test set with more reliable labels.
翻译:我们运用对 CAD 演示的深入学习来描述我们在机械组件中配对部件之间自由度的推论工作。 我们用由 CAD 部件和配对组成在一起的伴侣组成的真实世界机械组件的庞大数据集来培训我们的模型。 我们提出了重新确定这些配对的方法,以使它们更好地反映组装的动作,并缩小可能的动作轴。 我们还进行了用户研究,以创建带有更可靠标签的运动附加说明的测试组。