Deterministic $K$-identification (DKI) is addressed for Gaussian channels with slow fading (GSF), where the transmitter is restricted to an average power constraint and channel side information is available at the decoder. We derive lower and upper bounds on the DKI capacity when the number of identifiable messages $K$ may grow sub-linearly with the codeword length $n$. As a key finding, we establish that for deterministic encoding, assuming that the number of identifiable messages $K = 2^{\kappa \log n}$ with $\kappa \in [0,1)$ being the identification target rate, the codebook size scales as $2^{(n\log n)R}$, where $R$ is the coding rate.
翻译:确定值 $K$ 识别(DKI) 用于慢速淡化的高斯海峡频道(GSF), 发射器限于平均功率限制, 解码器可提供频道侧信息 。 当可识别信息的数量可能随着代码长度增加, $K$ 的亚线性增长时, 我们从 DKI 能力中获取下限和上限 。 作为关键发现, 我们确定确定确定值的编码, 假设可识别信息的数量 $K = 2 ⁇ kappa\log n} $, 以$ kappa $ =in [ 0. 1] 为识别目标率, 代码表的大小尺度为 2 ⁇ (n\log n) R$, 美元为编码率 。