Measurement noise is an integral part while collecting data of a physical process. Thus, noise removal is necessary to draw conclusions from these data, and it often becomes essential to construct dynamical models using these data. We discuss a methodology to learn differential equation(s) using noisy and irregular sampled measurements. In our methodology, the main innovation can be seen in the integration of deep neural networks with the neural ordinary differential equations (ODEs) approach. Precisely, we aim at learning a neural network that provides (approximately) an implicit representation of the data and an additional neural network that models the vector fields of the dependent variables. We combine these two networks by constraining using neural ODEs. The proposed framework to learn a model describing the vector field is highly effective under noisy measurements. The approach can handle scenarios where dependent variables are not available at the same temporal grid. Moreover, a particular structure, e.g., second-order with respect to time, can easily be incorporated. We demonstrate the effectiveness of the proposed method for learning models using data obtained from various differential equations and present a comparison with the neural ODE method that does not make any special treatment to noise.
翻译:在收集物理过程的数据时,测量噪音是一个不可分割的组成部分。因此,清除噪音对于从这些数据中得出结论是必要的,而且往往对于利用这些数据构建动态模型至关重要。我们讨论使用噪音和不规则抽样测量来学习差异方程式的方法。在我们的方法中,主要的创新体现在深神经网络与神经普通差异方程式(ODEs)方法的整合上。准确地说,我们的目标是学习一个神经网络,提供(约)隐含的数据表示,并增加一个神经网络,以模拟依赖变量的矢量场。我们通过使用神经观察器将这两个网络结合起来。在噪音测量下,学习描述矢量场模型的拟议框架非常有效。该方法可以处理在同一时间网格上无法提供依赖变量的情形。此外,可以很容易地纳入一个特定的结构,例如,与时间有关的第二顺序。我们展示了使用不同方程式获得的数据来学习模型的拟议方法的有效性,我们通过使用神经观察系统方法进行比较,而该方法不会对噪音作任何特殊处理。