This paper presents a framework to enable a team of heterogeneous mobile robots to model and sense a multiscale system. We propose a coupled strategy, where robots of one type collect high-fidelity measurements at a slow time scale and robots of another type collect low-fidelity measurements at a fast time scale, for the purpose of fusing measurements together. The multiscale measurements are fused to create a model of a complex, nonlinear spatiotemporal process. The model helps determine optimal sensing locations and predict the evolution of the process. Key contributions are: i) consolidation of multiple types of data into one cohesive model, ii) fast determination of optimal sensing locations for mobile robots, and iii) adaptation of models online for various monitoring scenarios. We illustrate the proposed framework by modeling and predicting the evolution of an artificial plasma cloud. We test our approach using physical marine robots adaptively sampling a process in a water tank.
翻译:本文提出了一个框架,使一个由多种不同的移动机器人组成的团队能够建模和感知一个多尺度系统。我们提出了一个组合战略,其中一种类型的机器人收集慢时速的高不贞度测量,另一种类型的机器人收集快时速的低不贞度测量,以便同时进行引信测量。多尺度测量被结合,以建立一个复杂、非线性短暂过程的模型。模型有助于确定最佳的遥感位置并预测这一过程的演变。模型的主要贡献是:(一) 将多种类型的数据合并成一个具有凝聚力的模型,(二) 快速确定移动机器人的最佳遥感位置,以及(三) 在线对各种监测情景的模型进行改造。我们通过模拟和预测人造等离子云的演变,来说明拟议框架。我们用物理海洋机器人在储水池内对过程进行适应性取样,测试我们的方法。