Tensor Decision Diagrams (TDDs) provide an efficient structure for representing tensors by combining techniques from both tensor networks and decision diagrams, demonstrating competitive performance in quantum circuit simulation and verification. However, existing decision diagrams, including TDDs, fail to exploit isomorphisms within tensors, limiting their compression efficiency. This paper introduces Local Invertible Map Tensor Decision Diagrams (LimTDDs), an extension of TDD that integrates local invertible maps (LIMs) to achieve more compact representations. Unlike LIMDD, which applies Pauli operators to quantum states, LimTDD generalizes this approach using the XP-stabilizer group, enabling broader applicability. We develop efficient algorithms for normalization and key tensor operations, including slicing, addition, and contraction, essential for quantum circuit simulation and verification. Theoretical analysis shows that LimTDD surpasses TDD in compactness while maintaining its generality and offers exponential advantages over both TDD and LIMDD in the best-case scenarios. Experimental results validate these improvements, demonstrating LimTDD's superior efficiency in quantum circuit simulation and functionality computation.
翻译:暂无翻译