Continual learning (CL) aims to learn from sequentially arriving tasks without forgetting previous tasks. Whereas CL algorithms have tried to achieve higher average test accuracy across all the tasks learned so far, learning continuously useful representations is critical for successful generalization and downstream transfer. To measure representational quality, we re-train only the output layers using a small balanced dataset for all the tasks, evaluating the average accuracy without any biased predictions toward the current task. We also test on several downstream tasks, measuring transfer learning accuracy of the learned representations. By testing our new formalism on ImageNet-100 and ImageNet-1000, we find that using more exemplar memory is the only option to make a meaningful difference in learned representations, and most of the regularization- or distillation-based CL algorithms that use the exemplar memory fail to learn continuously useful representations in class-incremental learning. Surprisingly, unsupervised (or self-supervised) CL with sufficient memory size can achieve comparable performance to the supervised counterparts. Considering non-trivial labeling costs, we claim that finding more efficient unsupervised CL algorithms that minimally use exemplary memory would be the next promising direction for CL research.
翻译:持续学习(CL) 旨在从按顺序完成的任务中学习,而不会忘记先前的任务。 虽然 CL 算法试图在迄今所学的所有任务中实现更高的平均测试精确度, 学习持续有用的表达方式对于成功推广和下游转移至关重要。 为了衡量代表性质量, 我们只对产出层进行再培训, 对所有任务使用一个小型平衡的数据集, 评估平均准确性, 而不对当前任务作任何有偏差的预测 。 我们还测试了几个下游任务, 测量了所学表现的转移学习准确性 。 通过测试我们在图像Net- 100 和 imageNet-1100 上的新形式主义, 我们发现, 使用更多的Exmplar记忆是唯一的选项, 才能在学习的表达方式和基于正规化或蒸馏的 CL 算法中做出有意义的改变。 为了使用超时记忆无法持续地在课堂内学习中找到有用的表达方式。 令人惊讶的是, 具有足够记忆力的( 或自监督的) CL 的 CL 可以实现与受监督的对应方的类似性业绩。 考虑到非三重标签成本, 我们认为, 找到更高效的 CL 的 CL 将找到更有希望的 CL 的 CL 的 CL 。