项目名称: 多级分布预测控制及其在新能源电力系统控制中的应用

项目编号: No.61273144

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 自动化技术、计算机技术

项目作者: 刘向杰

作者单位: 华北电力大学

项目金额: 77万元

中文摘要: 大规模复杂系统通常由许多相互连接的子系统组成。集中控制结构难以满足系统内部计算复杂性、鲁棒性、可靠性以及通信带宽等要求。多级分布式模型预测控制是处理大规模复杂系统的有效手段。由于多级分布式模型预测控制需在局域控制器间传递信息以达到全局稳定性,因此相对于集中预测控制,其理论与应用更加复杂。针对多级分布式模型预测控制系统结构选择、分布式状态估计、以及保证闭环稳定性能的优化算法展开研究。现代电力系统是典型的地理分散的大规模系统,尤其是以风能为主的间歇性可再生能源发电系统介入时会引起电网波动。运用多级分布式模型预测控制实现电力系统自动发电控制(AGC),满足电力系统多种约束条件下,使AGC实现以减少机组疲劳和磨损为核心的经济目标。运用非线性系统模糊神经网络建模方法、启发式算法、遗传算法等去解非线性系统约束问题,实现多级分布式模型预测控制中的多目标优化,从而实现电力系统的经济运行。

中文关键词: 分级递阶控制;分布式模型预测控制;负荷频率控制;新能源电力系统控制;

英文摘要: Large scale systems are often composed by many interacting subsystems and can be difficult to control with a centralized control structure due to the required inherent computational complexity, due to robustness and reliability problems and due to communication bandwidth limitations. For all these reasons, distributed and hierarchical model predictive control have been developed and applied to be an effective way of copying with these large scale systems. The design of distributed MPC systems needs to transmit the information among local regulators to achieve global stability and performance results, thus is more complicated than centralized control. This research is devoted to selection of the control structure, the distributed state estimation, and the effective optimal algorithms with guaranteed properties and stability. Modern power system is the typical large-scale, geographically expansive systems. A distributed MPC framework is appealing in this context, especially when greater utilization of intermittent renewable resources, such as wind generation, brings with it power flow fluctuations. Most interconnected power systems rely on automatic generation control (AGC) for regulating system frequency and tie-line interchange. With distributed and hierarchical model predictive control, the economic objective i

英文关键词: Hierarchical control;Distributed model predictive c;Load frequency control;Renewable power system control;

成为VIP会员查看完整内容
0

相关内容

《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
专知会员服务
27+阅读 · 2021年9月17日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
97+阅读 · 2021年6月23日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
65+阅读 · 2021年1月28日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
面向自动驾驶的边缘计算技术研究综述
专知
4+阅读 · 2021年5月3日
【APC】先进过程控制系统(APC: Advanced Process Control)
产业智能官
62+阅读 · 2020年7月12日
ICLR 2019论文解读:深度学习应用于复杂系统控制
机器之心
11+阅读 · 2019年1月10日
【工业智能】风机齿轮箱故障诊断 — 基于振动信号
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年10月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
15+阅读 · 2018年4月5日
小贴士
相关VIP内容
《智能电网组件:功能和效益》白皮书
专知会员服务
26+阅读 · 2022年4月13日
专知会员服务
27+阅读 · 2021年9月17日
逆优化: 理论与应用
专知会员服务
36+阅读 · 2021年9月13日
专知会员服务
97+阅读 · 2021年6月23日
【2021新书】分布式优化,博弈和学习算法,227页pdf
专知会员服务
227+阅读 · 2021年5月25日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
133+阅读 · 2021年2月17日
专知会员服务
65+阅读 · 2021年1月28日
【CMU】深度学习模型中集成优化、约束和控制,33页ppt
专知会员服务
45+阅读 · 2020年5月23日
【UCLA】基于深度神经网络的工业大模型预测控制,36页ppt
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
Arxiv
13+阅读 · 2021年10月22日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
102+阅读 · 2020年3月4日
Arxiv
11+阅读 · 2018年9月28日
Arxiv
15+阅读 · 2018年4月5日
微信扫码咨询专知VIP会员