We consider the equations of electromagnetism set on a domain made of a dielectric and a conductor subdomain in a regime where the conductivity is large. Assuming smoothness for the dielectric--conductor interface, relying on recent works we prove that the solution of the Maxwell equations admits a multiscale asymptotic expansion with profile terms rapidly decaying inside the conductor. This skin effect is measured by introducing a skin depth function that turns out to depend on the mean curvature of the boundary of the conductor. We then confirm these asymptotic results by numerical experiments in various axisymmetric configurations. We also investigate numerically the case of a nonsmooth interface, namely a cylindrical conductor.
翻译:我们考虑电磁学的方程式,这个方程式是由电电和导体子域在导电率大的系统中形成的。假设电导界面的平滑性,依靠最近的工程,我们证明Maxwell方程式的解决方案允许多尺度的无线扩张,其配置条件在导电器内迅速衰减。这种皮肤效应是通过引入皮肤深度功能来衡量的,该功能最终取决于导电的边界的平均曲线。然后,我们通过在各种轴度配置中进行数字实验来确认这些无线结果。我们还从数字角度调查非光谱界面,即圆柱导体界面的情况。