The stochastic volatility model is a popular tool for modeling the volatility of assets. The model is a nonlinear and non-Gaussian state space model, and consequently is difficult to fit. Many approaches, both classical and Bayesian, have been developed that rely on numerically intensive techniques such as quasi-maximum likelihood estimation and Markov chain Monte Carlo (MCMC). Convergence and mixing problems still plague MCMC algorithms when drawing samples sequentially from the posterior distributions. While particle Gibbs methods have been successful when applied to nonlinear or non-Gaussian state space models in general, slow convergence still haunts the technique when applied specifically to stochastic volatility models. We present an approach that couples particle Gibbs with ancestral sampling and joint parameter sampling that ameliorates the slow convergence and mixing problems when fitting both univariate and multivariate stochastic volatility models. We demonstrate the enhanced method on various numerical examples.


翻译:随机波动模型是模拟资产波动的流行工具。 该模型是一个非线性和非古裔国家空间模型,因此很难适应。 已经开发了许多古典和贝叶斯方法,这些方法依赖数字密集技术,如准最大可能性估算和Markov链蒙得卡洛(MCMCC)等。 在从后方分布物中按顺序提取样本时,混杂问题仍然困扰着MCMC算法。 虽然粒子Gibbs方法在应用于非线性国家或非古裔国家空间模型时是成功的,但一般而言,缓慢的趋同仍然困扰着这一技术,具体应用于随机性波动模型。我们介绍了一种方法,即用祖先采样和联合参数采样将粒子结合成粒子,在匹配单体和多变异性挥发性波动模型时,可以缓解缓慢的趋同和混合问题。 我们在各种数字实例中展示了强化的方法。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
专知会员服务
62+阅读 · 2020年3月4日
深度强化学习策略梯度教程,53页ppt
专知会员服务
181+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A General and Adaptive Robust Loss Function
Arxiv
8+阅读 · 2018年11月5日
Arxiv
5+阅读 · 2018年5月28日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
NIPS 2017:贝叶斯深度学习与深度贝叶斯学习(讲义+视频)
机器学习研究会
36+阅读 · 2017年12月10日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员