The investigation of uncertainty is of major importance in risk-critical applications, such as medical image segmentation. Belief function theory, a formal framework for uncertainty analysis and multiple evidence fusion, has made significant contributions to medical image segmentation, especially since the development of deep learning. In this paper, we provide an introduction to the topic of medical image segmentation methods using belief function theory. We classify the methods according to the fusion step and explain how information with uncertainty or imprecision is modeled and fused with belief function theory. In addition, we discuss the challenges and limitations of present belief function-based medical image segmentation and propose orientations for future research. Future research could investigate both belief function theory and deep learning to achieve more promising and reliable segmentation results.
翻译:对不确定性的调查在医学图像分割等风险关键应用中非常重要。信仰功能理论是不确定性分析和多重证据融合的正式框架,它为医学图像分割做出了重要贡献,特别是自深层学习以来。我们在本文件中介绍了医学图像分割方法的专题,使用了信仰功能理论。我们根据聚合步骤对方法进行了分类,并解释了具有不确定性或不精确性的信息如何建模,如何与信仰功能理论相结合。此外,我们讨论了基于信仰功能的医疗图像分割的挑战和局限性,并提出了未来研究的方向。未来研究可以调查信仰功能理论和深层学习,以取得更有希望和可靠的分割结果。