Deep Learning (DL) holds great promise in reshaping the healthcare industry owing to its precision, efficiency, and objectivity. However, the brittleness of DL models to noisy and out-of-distribution inputs is ailing their deployment in the clinic. Most models produce point estimates without further information about model uncertainty or confidence. This paper introduces a new Bayesian DL framework for uncertainty quantification in segmentation neural networks: SUPER-Net: trustworthy medical image Segmentation with Uncertainty Propagation in Encoder-decodeR Networks. SUPER-Net analytically propagates, using Taylor series approximations, the first two moments (mean and covariance) of the posterior distribution of the model parameters across the nonlinear layers. In particular, SUPER-Net simultaneously learns the mean and covariance without expensive post-hoc Monte Carlo sampling or model ensembling. The output consists of two simultaneous maps: the segmented image and its pixelwise uncertainty map, which corresponds to the covariance matrix of the predictive distribution. We conduct an extensive evaluation of SUPER-Net on medical image segmentation of Magnetic Resonances Imaging and Computed Tomography scans under various noisy and adversarial conditions. Our experiments on multiple benchmark datasets demonstrate that SUPER-Net is more robust to noise and adversarial attacks than state-of-the-art segmentation models. Moreover, the uncertainty map of the proposed SUPER-Net associates low confidence (or equivalently high uncertainty) to patches in the test input images that are corrupted with noise, artifacts, or adversarial attacks. Perhaps more importantly, the model exhibits the ability of self-assessment of its segmentation decisions, notably when making erroneous predictions due to noise or adversarial examples.


翻译:深学习( DL) 因其精密性、效率和客观性,在重塑医疗保健行业方面有着巨大的希望。 但是, DL 模型对于杂音和分配外投入的微弱性正在限制其在诊所的部署。 大多数模型在不提供关于模型不确定性或信心的进一步信息的情况下生成点估计数。 本文引入了一个新的 Bayesian DL 框架,用于分解神经网络的不确定性量化: SUPER-Net: 在 Eccoder- decodR 网络中, 具有不确定性的可信赖的医疗图像分解与不稳定性分解。 SUPER-Net 分析传播, 使用泰勒序列近似值, 将模型的表面分布在非线性层中( 平均和易变异性), 制作模型的上头两个瞬间( 度和易变异性) 模型在非线性线性数据分析中同时学习了平均值和共变异性。 在磁性测试中, 演示了各种磁性数据对比性测试的模型, 演示了各种磁性模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
牛津大学最新《计算代数拓扑》笔记书,107页pdf
专知会员服务
43+阅读 · 2022年2月17日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
30+阅读 · 2021年7月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员