The potential of Machine Learning Control (MLC) in HVAC systems is hindered by its opaque nature and inference mechanisms, which is challenging for users and modelers to fully comprehend, ultimately leading to a lack of trust in MLC-based decision-making. To address this challenge, this paper investigates and explores Interpretable Machine Learning (IML), a branch of Machine Learning (ML) that enhances transparency and understanding of models and their inferences, to improve the credibility of MLC and its industrial application in HVAC systems. Specifically, we developed an innovative framework that combines the principles of Shapley values and the in-context learning feature of Large Language Models (LLMs). While the Shapley values are instrumental in dissecting the contributions of various features in ML models, LLM provides an in-depth understanding of the non-data-driven or rule-based elements in MLC; combining them, LLM further packages these insights into a coherent, human-understandable narrative. The paper presents a case study to demonstrate the feasibility of the developed IML framework for model predictive control-based precooling under demand response events in a virtual testbed. The results indicate that the developed framework generates and explains the control signals in accordance with the rule-based rationale.
翻译:暂无翻译