Solomon and Elkin constructed a shortcutting scheme for weighted trees which results in a 1-spanner for the tree metric induced by the input tree. The spanner has logarithmic lightness, logarithmic diameter, a linear number of edges and bounded degree (provided the input tree has bounded degree). This spanner has been applied in a series of papers devoted to designing bounded degree, low-diameter, low-weight $(1+\epsilon)$-spanners in Euclidean and doubling metrics. In this paper, we present a simple local routing algorithm for this tree metric spanner. The algorithm has a routing ratio of 1, is guaranteed to terminate after $O(\log n)$ hops and requires $O(\Delta \log n)$ bits of storage per vertex where $\Delta$ is the maximum degree of the tree on which the spanner is constructed. This local routing algorithm can be adapted to a local routing algorithm for a doubling metric spanner which makes use of the shortcutting scheme.


翻译:所罗门和爱尔金为加权树木设计了一个短切方案, 其结果是输入树引致的树测量值为 1 个空格。 光栅具有对数光度、 对数直径、 线性边缘数和约束度( 前提是输入树具有约束度 ) 。 这个光栅已在一系列论文中应用, 用于在 Euclidean 中设计约束度、 低直径、 低重量( 1 ⁇ epsilon) $- spanner 和双倍量度。 在本文中, 我们为这个树测量仪提供了简单的本地路径算法 。 算法的路径比值为 1, 保证在 $( n) 美元 跳出后终止, 并需要$O (\ Delta\ log n) 的储量位数 / verex, 其中 $\ Delta 美元是用于建造顶层的树的最大程度 。 这个本地路法算法可以调整为使用 双倍的光标的本地路径算法 。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
IJCAI2020接受论文列表,592篇论文pdf都在这了!
专知会员服务
64+阅读 · 2020年7月16日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
4+阅读 · 2018年4月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
6+阅读 · 2017年7月17日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
4+阅读 · 2018年11月6日
Redis Stream 实践
性能与架构
3+阅读 · 2018年7月21日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
相关论文
Arxiv
0+阅读 · 2021年11月12日
Arxiv
0+阅读 · 2021年11月11日
Arxiv
4+阅读 · 2018年4月29日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Arxiv
6+阅读 · 2017年7月17日
Top
微信扫码咨询专知VIP会员