The Cosserat continuum is used in this paper to regularize the ill-posed governing equations of the Cauchy/Maxwell continuum. Most available constitutive models adopt yield and plastic potential surfaces with a circular deviatoric section. This is a too crude an approximation which hinders the application of the Cosserat continuum into practice, particularly in the geotechnical domain. An elasto-plastic constitutive model for the linear formulation of the Cosserat continuum is here presented, which features non-associated flow and hardening/softening behaviour, whilst linear hyper-elasticity is adopted to reproduce the recoverable response. For the formulation of the yield and plastic potential functions, a definition of the \textit{equivalent von Mises stress} is used which is based on Hencky's interpretation of the von Mises criterion and also on the theory of representations. The dependency on the Lode's angle of both the yield and plastic potential functions is introduced through the adoption of a recently proposed \textit{Generalized classical} criterion, which rigorously defines most of the classical yield and failure criteria.


翻译:本文采用Cauchy/Maxwell连续体的Coserat连续体常规化管理方程式; 多数现有组成模型采用带有循环偏离部分的产值和塑料潜在表面; 这太粗糙,妨碍了Coserat连续体的运用,特别是在土工领域; 此处提出了Coserat连续体线性配方的弹性塑性构件模型,其特点是非关联流动和硬化/易化行为,同时采用线性超弹性来复制可回收反应; 制作产值和塑料潜在功能时,使用了基于Henckky对von Mises标准的解释和陈述理论的\ textit{qual von Mises应力} 定义。 采用最近提议的\ textitilit{cenized cragy}标准对Lode的产值和塑料潜在功能角度的依赖,该标准严格界定了古典产值和故障标准的多数。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Quantum Cross Entropy and Maximum Likelihood Principle
Arxiv
0+阅读 · 2021年8月24日
Arxiv
0+阅读 · 2021年8月24日
Arxiv
11+阅读 · 2021年2月17日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员