Haptic feedback is important to make robots more dexterous and effective in unstructured environments. High-resolution haptic sensors are still not widely available, and their application is often bound by the resolution-robustness dilemma. A route towards high-resolution and robust skin embeds a few sensor units (taxels) into a flexible surface material and uses signal processing to achieve sensing with super-resolution accuracy. We propose a theory for geometric super-resolution to guide the development of haptic sensors of this kind and link it to machine learning techniques for signal processing. This theory is based on sensor isolines and allows us to predict force sensitivity and accuracy in contact position and force magnitude as a spatial quantity. We evaluate the influence of different factors, such as elastic properties of the material, structure design, and transduction methods, using finite element simulations and by implementing real sensors. We empirically determine sensor isolines and validate the theory in two custom-built sensors with barometric units for 1D and 2D measurement surfaces. Using machine learning methods for the inference of contact information, our sensors obtain an unparalleled average super-resolution factor of over 100 and 1200, respectively. Our theory can guide future haptic sensor designs and inform various design choices.


翻译:高分辨率突变传感器尚未广泛提供,而且其应用往往受分辨率-气压两难困境的约束。通向高分辨率和坚固皮肤的路径将一些感应器(税项)嵌入灵活的表面材料中,并使用信号处理方法实现超分辨率精确度的感测。我们提出了一个几何超分辨率理论,以指导这种随机感应器的开发,并将其与用于信号处理的机器学习技术联系起来。这一理论以感应异质为基础,使我们能够预测接触位置和强度的空间数量中的灵敏度和精确度。我们评估不同因素的影响,例如材料、结构设计和转换方法的弹性特性,使用有限的元素模拟和采用真正的传感器。我们通过实验性地确定感应器,并在两个定制的传感器中验证理论,用1D和2D测量表面的量测器进行测。使用机器学习方法来推断接触信息,我们的感应器可以分别获得100和112月的超分辨率感应器设计。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
1+阅读 · 2021年10月15日
Arxiv
0+阅读 · 2021年9月22日
Arxiv
5+阅读 · 2020年3月16日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ACL 2018 计算语言学协会接受论文列表
专知
3+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员