Characterization of breast parenchyma on dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Current quantitative approaches, including radiomics and deep learning models, do not explicitly capture the complex and subtle parenchymal structures, such as fibroglandular tissue. In this paper, we propose a novel method to direct a neural network's attention to a dedicated set of voxels surrounding biologically relevant tissue structures. By extracting multi-dimensional topological structures with high saliency, we build a topology-derived biomarker, TopoTxR. We demonstrate the efficacy of TopoTxR in predicting response to neoadjuvant chemotherapy in breast cancer. Our qualitative and quantitative results suggest differential topological behavior of breast tissue on treatment-na\"ive imaging, in patients who respond favorably to therapy versus those who do not.
翻译:由于组织结构的复杂性,在动态对比增强磁共振成像(DCE-MRI)上对乳腺显微镜进行定性是一项具有挑战性的任务。目前的定量方法,包括放射学和深层学习模型,并未明确捕捉复杂而微妙的显微镜结构,如纤维化腺组织。在本文中,我们提出了一个新颖的方法,引导神经网络关注与生物有关的组织结构周围的一组专用的氧化物。通过提取具有高度显著特征的多维表层结构,我们建立了一个表层生物标志,TopTxR。我们展示了托普克斯R在预测乳腺癌新甲草原化疗效方面的功效。我们的定性和定量结果显示,在治疗-纳子成像学上,乳腺组织在对治疗反应优于治疗的病人和不反应的病人中,在治疗-纳子成像学上有差异的表理行为。