We predict mechanical ventilation requirement and mortality using computational modeling of chest radiographs (CXRs) for coronavirus disease 2019 (COVID-19) patients. This two-center, retrospective study analyzed 530 deidentified CXRs from 515 COVID-19 patients treated at Stony Brook University Hospital and Newark Beth Israel Medical Center between March and August 2020. DL and machine learning classifiers to predict mechanical ventilation requirement and mortality were trained and evaluated using patient CXRs. A novel radiomic embedding framework was also explored for outcome prediction. All results are compared against radiologist grading of CXRs (zone-wise expert severity scores). Radiomic and DL classification models had mAUCs of 0.78+/-0.02 and 0.81+/-0.04, compared with expert scores mAUCs of 0.75+/-0.02 and 0.79+/-0.05 for mechanical ventilation requirement and mortality prediction, respectively. Combined classifiers using both radiomics and expert severity scores resulted in mAUCs of 0.79+/-0.04 and 0.83+/-0.04 for each prediction task, demonstrating improvement over either artificial intelligence or radiologist interpretation alone. Our results also suggest instances where inclusion of radiomic features in DL improves model predictions, something that might be explored in other pathologies. The models proposed in this study and the prognostic information they provide might aid physician decision making and resource allocation during the COVID-19 pandemic.


翻译:我们利用对2019年冠状病毒(COVID-19)病人进行乳房射线仪(CXRs)的计算模型预测了机械通风要求和死亡率。这一两中心回顾性研究分析了在2020年3月至8月期间在斯托尼布鲁克大学医院和纽尔克贝斯以色列医疗中心治疗的515 COVID-19病人的530分解的CXRs,而用于预测机械通风要求和死亡率的DL和机器学习分类师则使用病人CXRs进行了培训和评价。还探讨了用于结果预测的新型放射嵌入框架。所有结果都与CXRs的射线师分级(区级专家严重程度分分数)作了比较。放射性和DL分类模型的MAUCs为0.78+/0.02和0.81+/0.04,而用于机械通风要求和死亡率预测的专家分数为0.75+/0.02和0.79+/0.05分/0.05。他们利用放射和专家分数的混合分类方法得出了0.79+-0.04分数。所有结果都与Cs的XRis定分级(区专家分数)比较重分数(区)比重分数(区专家分分分分分数)比较。放射性分数(区),放射性和D+/0.03+/0.83+/0.04分解模型的分类模型模型模型模型模型的分类模型模型模型模型模型的分类模型的分类模型的分类模型的分类模型分析模型分析模型的模型显示了0.78/0.78+/0.02和D/D/0.81+/0.04)和D/0.81+/0.81+/0.04的分类模型显示了我们每次预测的计算方法的计算方法的计算结果。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Deep Learning
Arxiv
6+阅读 · 2018年8月3日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
CCF B类期刊IPM专刊截稿信息1条
Call4Papers
3+阅读 · 2018年10月11日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员