We consider a Markov chain on $\mathbb{R}^d$ with invariant measure $\mu$. We are interested in the rate of convergence of the empirical measures towards the invariant measure with respect to the $1$-Wasserstein distance. The main result of this article is a new upper bound for the expected Wasserstein distance, which is proved by combining the Kantorovich dual formula with a Fourier expansion. In addition, we show how concentration inequalities around the mean can be obtained.
翻译:我们考虑的是以不变措施为单位的Markov链条$mathbb{R ⁇ d$为单位的Markov链条。我们有兴趣了解在1美元-Wasserstein距离方面,实证措施与惯性措施的趋同速度。这一条的主要结果是为预期的Wasserstein距离增加了一个新的上限。通过将Kantorovich的双重公式与Fourier扩展结合起来,可以证明这一点。此外,我们展示了如何围绕平均值实现集中不平等。