Rule-based surrogate models are an effective and interpretable way to approximate a Deep Neural Network's (DNN) decision boundaries, allowing humans to easily understand deep learning models. Current state-of-the-art decompositional methods, which are those that consider the DNN's latent space to extract more exact rule sets, manage to derive rule sets at high accuracy. However, they a) do not guarantee that the surrogate model has learned from the same variables as the DNN (alignment), b) only allow to optimise for a single objective, such as accuracy, which can result in excessively large rule sets (complexity), and c) use decision tree algorithms as intermediate models, which can result in different explanations for the same DNN (stability). This paper introduces the CGX (Column Generation eXplainer) to address these limitations - a decompositional method using dual linear programming to extract rules from the hidden representations of the DNN. This approach allows to optimise for any number of objectives and empowers users to tweak the explanation model to their needs. We evaluate our results on a wide variety of tasks and show that CGX meets all three criteria, by having exact reproducibility of the explanation model that guarantees stability and reduces the rule set size by >80% (complexity) at equivalent or improved accuracy and fidelity across tasks (alignment).


翻译:摘要:基于规则的代理模型是一种有效且具有可解释性的近似深度神经网络决策边界的方式,使人类能够轻松理解深度学习模型。目前最先进的分解方法,这些方法考虑DNN的潜在空间以提取更精确的规则集,能够在高精度上导出规则集。然而,它们 a) 不能保证代理模型已从与DNN相同的变量中学习(对齐),b) 只允许优化单个目标,例如准确性,这可能导致过多的规则集(复杂度),c) 使用决策树算法作为中间模型,这可能导致相同DNN的不同解释(稳定性)。本文提出了CGX(列生成解释器)来解决这些限制问题---一种使用双线性规划从DNN的隐藏表示中提取规则的分解方法。该方法可优化任意数量的目标,并赋予用户根据需要调整解释模型的权利。我们在各种任务上评估了结果,并显示CGX满足所有三个标准,具有确切的解释模型的可重现性,保证稳定性并将规则集大小降低了 > 80%(复杂度),并在等效或提高的准确性和信度下跨任务改善对齐.

0
下载
关闭预览

相关内容

【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
23+阅读 · 2022年2月24日
Arxiv
15+阅读 · 2018年4月5日
VIP会员
相关VIP内容
【PKDD2020教程】可解释人工智能XAI:算法到应用,200页ppt
专知会员服务
100+阅读 · 2020年10月13日
相关资讯
AI可解释性文献列表
专知
42+阅读 · 2019年10月7日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
3+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员