Initially used to rank web pages, PageRank has now been applied in many fields. In general case, there are plenty of special vertices such as dangling vertices and unreferenced vertices in the graph. Existing PageRank algorithms usually consider them as `bad` vertices since they may take troubles. However, in this paper, we propose a parallel PageRank algorithm which can take advantage of these special vertices. For this end, we firstly interpret PageRank from the information transmitting perspective and give a constructive definition of PageRank. Then, based on the information transmitting interpretation, a parallel PageRank algorithm which we call the Information Transmitting Algorithm(ITA) is proposed. We prove that the dangling vertices can increase ITA's convergence rate and the unreferenced vertices and weak unreferenced vertices can decrease ITA's calculations. Compared with the MONTE CARLO method, ITA has lower bandwidth requirement. Compared with the power method, ITA has higher convergence rate and generates less calculations. Finally, experimental results on four data sets demonstrate that ITA is 1.5-4 times faster than the power method and converges more uniformly.
翻译:PageRank 最初用于对网页进行排位, 最初用于对网页进行排位, PageRank 现已应用于许多领域。 一般情况下, 有很多特殊的脊椎, 比如在图表中摇动的脊椎和未参照的脊椎。 现有的 PageRank 算法通常认为它们是`坏的' 脊椎, 因为可能会遇到麻烦。 但是, 在本文中, 我们提议了一个平行的 PageRank 算法, 可以利用这些特殊的脊椎。 为此, 我们首先从信息传输的角度来解释 PageRank, 并对 PageRank 给出建设性的定义。 然后, 根据信息传输解释, 提出了一个平行的 PageRank 算法, 我们称之为“ 信息传输 Algorithm( ITA) ” 。 我们证明, 挥动的脊椎可以提高ITA 的汇合率和未参照的微弱的脊椎可以减少 IATA 的计算。 与 MONTE CARLO 方法相比, ITA 的带宽要求较低。 与权力传输方法相比, 比较, 将 PageRank 兰克 平行的算法 比较, 最后, ITA 显示 15- 趋同 趋同 ITA 更 的 的 的 趋同 的 率 。