The $k$-Steiner-2NCS problem is as follows: Given a constant $k$, and an undirected connected graph $G = (V,E)$, non-negative costs $c$ on $E$, and a partition $(T, V-T)$ of $V$ into a set of terminals, $T$, and a set of non-terminals (or, Steiner nodes), where $|T|=k$, find a minimum-cost two-node connected subgraph that contains the terminals. We present a randomized polynomial-time algorithm for the unweighted problem, and a randomized PTAS for the weighted problem. We obtain similar results for the $k$-Steiner-2ECS problem, where the input is the same, and the algorithmic goal is to find a minimum-cost two-edge connected subgraph that contains the terminals. Our methods build on results by Bj\"orklund, Husfeldt, and Taslaman (ACM-SIAM SODA 2012) that give a randomized polynomial-time algorithm for the unweighted $k$-Steiner-cycle problem; this problem has the same inputs as the unweighted $k$-Steiner-2NCS problem, and the algorithmic goal is to find a minimum-size simple cycle $C$ that contains the terminals ($C$ may contain any number of Steiner nodes).
翻译:以恒定 $k$ 和无方向链接的图形 $G = (V,E) 美元,非负值成本 $E 美元,以及一个(T, V-T) 美元 的分割值 $V美元 进入一套终端, 美元, 以及一套非终点( 或施泰纳节点), 其中, $T ⁇ k$ 找到一个包含终端的最小成本双节连接子图。 我们为未加权问题提出了一个随机化的多盘时间算法, 为加权问题提出了一个随机化的 PTAS 。 在输入相同的情况下, 我们为美元- STeiner-2 ECS 问题取得了类似的结果, 算法的目标是找到一个包含终端的最小成本两节点连接子。 我们的方法基于“ orklund ” 、 Husfelt 和 Taslaman (ACM- SIAM SIA$ SO) 的结果, 将最小值算法值算算算算出一个简单的超标数, IM- sal- slumyal 问题, imalal imalal 问题是 exmal 。