We start with a pair of distinct $2\times 2$ complex Hadamard matrices and compute the Pimsner-Popa probabilistic constant and the exact value of the Connes-St{\o}rmer relative entropy between the corresponding pair of spin model subfactors of the hyperfinite type $II_1$ factor $R$. We have characterized when the subfactors are equal in terms of certain equivalence relation which is finer than the Hadamard equivalence relation. We also prove that the intersection of the two subfactors is a non-irreducible subfactor of $R$ with Jones index $4$. Moreover, the angle between the spin model subfactors is ninety degree. Further, for a pair of $4\times 4$ Hadamard inequivalent complex Hadamard matrices, we compute the Pimsner-Popa probabilistic constant between the corresponding spin model subfactors, and as an application we show that the Connes-St{\o}rmer entropy between them is bounded by $\log 2$. Prior to this, we have also computed the Pimsner-Popa probabilistic constant between a pair of Masas of a matrix algebra in terms of the Hamming numbers of the rows of certain naturally arising unitary matrix. As an application, we provide a legitimate bound for their relative entropy.
翻译:我们首先使用两对截然不同的 2 美元复杂的 Hadamard 矩阵, 并计算Pimsner- Popa 的概率常数, 和对等的双倍旋转模型子集体对对应的一对旋转模型子集体的精确值 $II_ 1美元 美元 美元 。 我们从子要素在某种等值关系上等值相等, 这比 Hadamard 等同关系要精细。 我们还证明两个子要素的交叉点是非可复制的子要素 $R$ 和 琼斯 指数 4美元 。 此外, 旋转模型子集体之间的角是 90 度 。 此外, 对于等式复合 Hadammard 矩阵中的一对对 4\ 4 美元 Hadamard, 我们计算 Pimner - Popa 准等等等等值的常数常数, 作为应用程序, 我们证明它们之间的连接号是 $\ log $ 美元 美元 和 数字 的直径 。