This paper presents a new approach which uses the tools within Artificial Intelligence (AI) software libraries as an alternative way of solving partial differential equations (PDEs) that have been discretised using standard numerical methods. In particular, we describe how to represent numerical discretisations arising from the finite volume and finite element methods by pre-determining the weights of convolutional layers within a neural network. As the weights are defined by the discretisation scheme, no training of the network is required and the solutions obtained are identical (accounting for solver tolerances) to those obtained with standard codes often written in Fortran or C++. We also explain how to implement the Jacobi method and a multigrid solver using the functions available in AI libraries. For the latter, we use a U-Net architecture which is able to represent a sawtooth multigrid method. A benefit of using AI libraries in this way is that one can exploit their power and their built-in technologies. For example, their executions are already optimised for different computer architectures, whether it be CPUs, GPUs or new-generation AI processors. In this article, we apply the proposed approach to eigenvalue problems in reactor physics where neutron transport is described by diffusion theory. For a fuel assembly benchmark, we demonstrate that the solution obtained from our new approach is the same (accounting for solver tolerances) as that obtained from the same discretisation coded in a standard way using Fortran. We then proceed to solve a reactor core benchmark using the new approach.


翻译:本文介绍了一种新的方法,即使用人工智能软件库内的工具,作为使用标准数字方法解决部分差异方程式(PDEs)的替代方法。特别是,我们描述了如何通过预先确定神经网络内卷积层的重量,来代表因有限体积和有限元素方法而产生的数字分解。由于权重是由离析计划界定的,因此不需要对网络进行培训,获得的解决方案与通常在Fortran或C++中以标准代码制成的解决方案相同(计算解析器容忍度)。我们还解释了如何使用AI库中可用的函数执行Jacobi方法和多格解析器。对于后者,我们使用能够代表锯齿多格方法的U-Net结构。使用人工智能图书馆的好处是,人们可以利用它们的力量和建筑技术。例如,它们已经为不同的计算机结构(计算解析器、GPUs或新一代AI处理器)获得了相同的处决方法。我们用这个方法来实施叶科比方法和多格解码解算器解算法,我们用这个方法来解释一个核心体化的系统,我们用一个标准化法质化方法来证明一个标准化的方法。 我们用这个理论来将一个标准化的解算法用于燃料的解算方法,我们从燃料的解算法。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月15日
Arxiv
0+阅读 · 2023年3月14日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员