Classical block designs are important combinatorial structures with a wide range of applications in Computer Science and Statistics. Here we give a new abstract description of block designs based on the arrow category construction. We show that models of this structure in the category of matrices and natural numbers recover the traditional classical combinatorial objects, while models in the category of completely positive maps yield a new definition of quantum designs. We show that this generalizes both a previous notion of quantum designs given by Zauner and the traditional description of block designs. Furthermore, we demonstrate that there exists a functor which relates every categorical block design to a quantum one.
翻译:暂无翻译