Graph transformation formalisms have proven to be suitable tools for the modelling of chemical reactions. They are well established in theoretical studies and increasingly also in practical applications in chemistry. The latter is made feasible via the development of programming frameworks which makes the formalisms executable. The application of such frameworks to large networks of chemical reactions, however, poses unique computational challenges. One such characteristic is the inherent combinatorial nature of the graphs involved. The graphs consist of many connected components, representing individual molecules. While the existing methods for implementing graph transformations can be applied to such graphs, the combinatorics of constructing graph matches quickly becomes a computational bottleneck as the size of the chemical reaction network grows. In this contribution, we develop a new method of enumerating graph transformation rule applications, designed to improve performance in these scenarios. The method is based on constructing graph matches component-wise, in an iterative fashion, allowing redundant applications to be detected early and pruned. We further extend the algorithm with an efficient heuristic, based on local symmetries of the graphs, which allow us to detect and discard isomorphic applications early. Finally, we conduct chemical network generation experiments on real-life as well as synthetic data and compare against state-of-the-art in the field.


翻译:图表形式化已证明是模拟化学反应的合适工具。它们已经在理论研究中得到了很好的确立,在化学的实际应用中也日益得到越来越多的实践应用。后者通过开发程序化框架而成为可行,使形式化可以执行。然而,将这种框架应用于大型化学反应网络带来了独特的计算挑战。这种特征之一是所涉图图的内在组合性质。图表由许多相互关联的组成部分组成,代表个别分子。虽然现有的图变方法可以适用于这些图表,但随着化学反应网络规模的扩大,构造图形匹配的组合法会很快成为计算性的瓶颈。在此贡献中,我们开发了一种新的图表变换规则应用的计算方法,目的是改进这些情景中的性能。这种方法的基础是以迭代方式构造图形相配,从而能够及早检测和调整冗余的应用程序。我们根据图表的本地配对法,进一步扩展了高效的图变异算法,从而使我们能够在化学反应网络的早期检测和丢弃物,并对照合成网络的生成数据进行早期实验。最后,我们从合成生命领域对数据进行实地和合成数据进行实地的对比。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
6+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员