The transversal hypergraph problem is the task of enumerating the minimal hitting sets of a hypergraph. It is a long-standing open question whether this can be done in output-polynomial time. For hypergraphs whose solutions have bounded size, Eiter and Gottlob [SICOMP 1995] gave an algorithm that runs in output-polynomial time, but whose space requirement also scales with the output size. We improve this to polynomial delay and polynomial space. More generally, we present an algorithm that on $n$-vertex, $m$-edge hypergraphs has delay $O(m^{k^*+1} n^2)$ and uses $O(mn)$ space, where $k^*$ is the maximum size of any minimal hitting set. Our algorithm is oblivious to $k^*$, a quantity that is hard to compute or even approximate. Central to our approach is the extension problem for minimal hitting sets, deciding for a set $X$ of vertices whether it is contained in any solution. With $|X|$ as parameter, we show that this is one of the first natural problems to be complete for the complexity class $W[3]$. We give an algorithm for the extension problem running in time $O(m^{|X|+1} n)$. We also prove a conditional lower bound under the Strong Exponential Time Hypothesis, showing that this is close to optimal. We apply our enumeration method to the discovery problem of minimal unique column combinations from data profiling. Our empirical evaluation suggests that the algorithm outperforms its worst-case guarantees on hypergraphs stemming from real-world databases.


翻译:跨纬度高挑问题是计算高光学最低击球量的任务。 这是一个长期存在的问题, 这个问题能否在输出- Polynomial 时间里完成 。 对于其解决方案已约束大小的高光仪, Eiter 和 Gottlob [ SICOMP 1995] 给出了一个在输出- Polynomial 时间里运行的算法, 但其空间要求也以输出大小为尺度。 我们将此改进为多元延迟和多元空间。 更一般地说, 我们展示了一个在美元- verversex 上, $$ 的顶值高光学计算会延迟 $(määkä ⁇ 1} n ⁇ 2} 美元, 并使用 $(mn) 美元(m) 美元(m) 美元(m) 美元(m), 并且使用美元(m) 美元(m) 美元(m) 的超高光速计算空间空间。 我们的算法会显示, 最起码的直径直径直径直径直达一个问题。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【电子书】大数据挖掘,Mining of Massive Datasets,附513页PDF
专知会员服务
103+阅读 · 2020年3月22日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
已删除
将门创投
5+阅读 · 2017年8月15日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月18日
Query Embedding on Hyper-relational Knowledge Graphs
Arxiv
4+阅读 · 2021年6月17日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
已删除
将门创投
5+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员