We design an algorithm for approximating the size of \emph{Max Cut} in dense graphs. Given a proximity parameter $\varepsilon \in (0,1)$, our algorithm approximates the size of \emph{Max Cut} of a graph $G$ with $n$ vertices, within an additive error of $\varepsilon n^2$, with sample complexity $\mathcal{O}(\frac{1}{\varepsilon^3} \log^2 \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$ and query complexity of $\mathcal{O}(\frac{1}{\varepsilon^4} \log^3 \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon})$. Since Goldreich, Goldwasser and Ron (JACM 98) gave the first algorithm with sample complexity $\mathcal{O}(\frac{1}{\varepsilon^5}\log \frac{1}{\varepsilon})$ and query complexity of $\mathcal{O}(\frac{1}{\varepsilon^7}\log^2 \frac{1}{\varepsilon})$, there have been several efforts employing techniques from diverse areas with a focus on improving the sample and query complexities. Our work makes the first improvement in the sample complexity as well as query complexity after more than a decade from the previous best results of Alon, Vega, Kannan and Karpinski (JCSS 03) and of Mathieu and Schudy (SODA 08) respectively, both with sample complexity $\mathcal{O}\left(\frac{1}{{\varepsilon}^4}{\log}\frac{1}{\varepsilon}\right)$. We also want to note that the best time complexity of this problem was by Alon, Vega, Karpinski and Kannan (JCSS 03). By combining their result with an approximation technique by Arora, Karger and Karpinski (STOC 95), they obtained an algorithm with time complexity of $2^{\mathcal{O}(\frac{1}{{\varepsilon}^2} \log \frac{1}{\varepsilon})}$. In this work, we have improved this further to $2^{\mathcal{O}(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} )}$.


翻译:我们设计了一种算法, 用于在密度图形中接近 commlictium {mph{max cut} 。 近距离参数 $\ varepsilon\ in (0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,,,,,,,,,,,,,, 4, 4, 4, 4,,,,,,,,,,,, 4, 4, 4,,, 4, 4, 4, 4, 4, 4,,,, 4, 4, 4, 4, 4,,,,,,,,,,,,,,,,,,, 4,,,,,,,,

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
80+阅读 · 2020年12月5日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
“CVPR 2020 接受论文列表 1470篇论文都在这了
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2022年2月22日
Arxiv
0+阅读 · 2022年2月21日
Arxiv
0+阅读 · 2022年2月19日
VIP会员
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
一文读懂Faster RCNN
极市平台
5+阅读 · 2020年1月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
已删除
将门创投
9+阅读 · 2018年12月19日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员