In this work, we give provable sieving algorithms for the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP) on lattices in $\ell_p$ norm ($1\leq p\leq\infty$). The running time we obtain is better than existing provable sieving algorithms. We give a new linear sieving procedure that works for all $\ell_p$ norm ($1\leq p\leq\infty$). The main idea is to divide the space into hypercubes such that each vector can be mapped efficiently to a sub-region. We achieve a time complexity of $2^{2.751n+o(n)}$, which is much less than the $2^{3.849n+o(n)}$ complexity of the previous best algorithm. We also introduce a mixed sieving procedure, where a point is mapped to a hypercube within a ball and then a quadratic sieve is performed within each hypercube. This improves the running time, especially in the $\ell_2$ norm, where we achieve a time complexity of $2^{2.25n+o(n)}$, while the List Sieve Birthday algorithm has a running time of $2^{2.465n+o(n)}$. We adopt our sieving techniques to approximation algorithms for SVP and CVP in $\ell_p$ norm ($1\leq p\leq\infty$) and show that our algorithm has a running time of $2^{2.001n+o(n)}$, while previous algorithms have a time complexity of $2^{3.169n+o(n)}$.
翻译:在这项工作中, 我们给最短矢量问题( SVP) 和关于 lattices 的 $\ ell_ p$ 标准 (1\leq p\leq\ infty$) 最短矢量问题( SVP) 和最接近矢量问题( CVP ) 。 我们获得的运行时间比现有的可确认量算法要好得多。 我们还引入了一个新的线性筛选程序, 用于所有 $_ p$ 标准 (1\leq pleq\ 69) 。 主要的想法是将空间分为超立方, 这样每个矢量都可以有效地向子区域映射 。 我们的时间复杂度为 2\ 2751 n (n) 标准$, 远低于 $3. 849n (n) 最佳算法。 我们还引入了一个混合的筛选程序, 该程序将一个点映射到球中的超立方体, 然后在每超立方体中执行二次曲线 。 这样可以改进运行的时间, 特别是 $\\\\\ lixxxxxxxxxx 。