We introduce a novel framework for image captioning that can produce natural language explicitly grounded in entities that object detectors find in the image. Our approach reconciles classical slot filling approaches (that are generally better grounded in images) with modern neural captioning approaches (that are generally more natural sounding and accurate). Our approach first generates a sentence `template' with slot locations explicitly tied to specific image regions. These slots are then filled in by visual concepts identified in the regions by object detectors. The entire architecture (sentence template generation and slot filling with object detectors) is end-to-end differentiable. We verify the effectiveness of our proposed model on different image captioning tasks. On standard image captioning and novel object captioning, our model reaches state-of-the-art on both COCO and Flickr30k datasets. We also demonstrate that our model has unique advantages when the train and test distributions of scene compositions -- and hence language priors of associated captions -- are different. Code has been made available at: https://github.com/jiasenlu/NeuralBabyTalk


翻译:我们引入了一个新的图像字幕框架, 能够产生自然语言, 明确基于天体探测器在图像中发现的实体。 我们的方法将古典的空档填充方法( 通常以图像为基础)与现代神经字幕方法( 通常是更自然的探测和准确的) 相调和。 我们的方法首先生成句子“ 板块”, 空格位置与特定图像区域明确挂钩。 这些空格随后由天体探测器在区域内确定的视觉概念填充。 整个结构( 指令模板生成和用天体探测器填充的空档) 是端到端的不同。 我们验证了我们关于不同图像字幕任务的拟议模型的有效性。 关于标准图像字幕和新版对象字幕, 我们的模式在COCO 和 Flick30k 数据集上都达到了最新艺术水平。 我们还表明, 当火车和测试场景构成分布时, 我们的模式具有独特的优势, 以及因此相关字幕的先前语言是不同的。 代码已经发布在 https://github.com/jiasenlu/ NeuralBabyTalk 上 。

6
下载
关闭预览

相关内容

图像字幕(Image Captioning),是指从图像生成文本描述的过程,主要根据图像中物体和物体的动作。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
10分钟搞懂反向传播| Neural Networks #13
AI研习社
3+阅读 · 2018年1月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Neural Module Networks for Reasoning over Text
Arxiv
9+阅读 · 2019年12月10日
Neural Image Captioning
Arxiv
5+阅读 · 2019年7月2日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
Top
微信扫码咨询专知VIP会员