Active Internet measurements face challenges when some measurements require many remote vantage points. In this paper, we propose a novel technique for measuring remote IPv6 networks via side channels in ICMP rate limiting, a required function for IPv6 nodes to limit the rate at which ICMP error messages are generated. This technique, iVantage, can to some extent use 1.1M remote routers distributed in 9.5k autonomous systems and 182 countries as our "vantage points". We apply iVantage to two different, but both challenging measurement tasks: 1) measuring the deployment of inbound source address validation (ISAV) and 2) measuring reachability between arbitrary Internet nodes. We accomplish these two tasks from only one local vantage point without controlling the targets or relying on other services within the target networks. Our large-scale ISAV measurements cover ~50% of all IPv6 autonomous systems and find ~79% of them are vulnerable to spoofing, which is the most large-scale measurement study of IPv6 ISAV to date. Our method for reachability measurements achieves over 80% precision and recall in our evaluation. Finally, we perform an Internet-wide measurement of the ICMP rate limiting implementations, present a detailed discussion on ICMP rate limiting, particularly the potential security and privacy risks in the mechanism of ICMP rate limiting, and provide possible mitigation measures. We make our code available to the community.


翻译:暂无翻译

0
下载
关闭预览

相关内容

南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
80+阅读 · 2022年4月3日
专知会员服务
54+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
80+阅读 · 2022年4月3日
专知会员服务
54+阅读 · 2020年9月7日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关论文
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
11+阅读 · 2018年9月28日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员