We present a multiway fusion algorithm capable of directly processing uncertain pairwise affinities. In contrast to existing works that require initial pairwise associations, our MIXER algorithm improves accuracy by leveraging the additional information provided by pairwise affinities. Our main contribution is a multiway fusion formulation that is particularly suited to processing non-binary affinities and a novel continuous relaxation whose solutions are guaranteed to be binary, thus avoiding the typical, but potentially problematic, solution binarization steps that may cause infeasibility. A crucial insight of our formulation is that it allows for three modes of association, ranging from non-match, undecided, and match. Exploiting this insight allows fusion to be delayed for some data pairs until more information is available, which is an effective feature for fusion of data with multiple attributes/information sources. We evaluate MIXER on typical synthetic data and benchmark datasets and show increased accuracy against the state of the art in multiway matching, especially in noisy regimes with low observation redundancy. Additionally, we collect RGB data of cars in a parking lot to demonstrate MIXER's ability to fuse data having multiple attributes (color, visual appearance, and bounding box). On this challenging dataset, MIXER achieves 74% F1 accuracy and is 49x faster than the next best algorithm, which has 42% accuracy.
翻译:我们展示了一种能够直接处理不确定的双亲亲近的多路融合算法。 与现有的需要初始对齐协会的工程不同, 我们的 MIXER 算法通过利用双亲亲亲关系提供的额外信息提高了准确性。 我们的主要贡献是, 一种特别适合处理非双亲亲关系和新颖的持续放松的多路融合配方, 其解决方案保证是二进制的, 从而避免了典型的、 但可能存在问题的解决方案二进制步骤, 可能导致不可行。 我们的配方的一个重要见解是, 它允许三种关联模式, 包括非匹配、 未解析和匹配。 利用这一洞见, 使得某些数据配对的聚合可以推迟, 直至有更多的信息。 这是将数据与多种属性/ 信息来源相结合的有效特征。 我们对典型合成数据和基准数据集的 MIXER 进行了评估, 并表明在多路匹配中, 特别是观测冗余度较低的热度制度中, 。 此外, 我们在停车场收集 RGB 汽车的数据数据数据中收集RIX 数据, 显示MIX 1 的准确性, 和 Flect 的准确性, 具有挑战性。