In this paper, we propose and analyze a time-stepping method for the time fractional Allen-Cahn equation. The key property of the proposed method is its unconditional stability for general meshes, including the graded mesh commonly used for this type of equations. The unconditional stability is proved through establishing a discrete nonlocal free energy dispassion law, which is also true for the continuous problem. The main idea used in the analysis is to split the time fractional derivative into two parts: a local part and a history part, which are discretized by the well known L1, L1-CN, and $L1^{+}$-CN schemes. Then an extended auxiliary variable approach is used to deal with the nonlinear and history term. The main contributions of the paper are: First, it is found that the time fractional Allen-Chan equation is a dissipative system related to a nonlocal free energy. Second, we construct efficient time stepping schemes satisfying the same dissipation law at the discrete level. In particular, we prove that the proposed schemes are unconditionally stable for quite general meshes. Finally, the efficiency of the proposed method is verified by a series of numerical experiments.
翻译:在本文中,我们提出并分析一个时间分数艾伦-卡恩方程式的时间步骤方法。 提议的方法的关键属性是它对于一般的meshes 无条件稳定, 包括通常用于这类方程式的分级网格。 无条件稳定通过建立离散的非本地自由能源消散法得到证明, 这对于持续的问题也是一样。 分析中使用的主要想法是将时间分数衍生物分为两个部分: 一个局部部分和一个历史部分, 由众所周知的L1、 L1- CN 和 $1- CN 计划分解。 然后, 使用一个扩展的辅助变量方法来处理非线性和历史术语。 论文的主要贡献是: 首先, 发现时间分数 Allen- Chan 方程式是一个与非本地自由能源相关的分解系统。 其次, 我们构建高效的时间分级计划满足离散法。 特别是, 我们证明, 拟议的计划对于非常普遍的中间线和历史术语是无条件稳定的。 最后, 提议的数字实验的效率通过一系列数字实验得到验证。