Many users turn to document retrieval systems (e.g. search engines) to seek answers to controversial questions. Answering such user queries usually require identifying responses within web documents, and aggregating the responses based on their different perspectives. Classical document retrieval systems fall short at delivering a set of direct and diverse responses to the users. Naturally, identifying such responses within a document is a natural language understanding task. In this paper, we examine the challenges of synthesizing such language understanding objectives with document retrieval, and study a new perspective-oriented document retrieval paradigm. We discuss and assess the inherent natural language understanding challenges in order to achieve the goal. Following the design challenges and principles, we demonstrate and evaluate a practical prototype pipeline system. We use the prototype system to conduct a user survey in order to assess the utility of our paradigm, as well as understanding the user information needs for controversial queries.


翻译:许多用户转向文件检索系统(例如搜索引擎),以寻找对有争议的问题的答案。回答这些用户的询问通常需要在网络文件中找到答案,并根据不同的观点汇总答复。古典文件检索系统在向用户提供一系列直接和多样的答复方面不足。自然,在文件内找到这类答复是一项自然的语言理解任务。在本文件中,我们研究了将此类语言理解目标与文件检索结合起来的挑战,并研究了一个新的面向视角的文件检索模式。我们讨论并评估了内在的自然语言理解挑战,以实现这一目标。根据设计挑战和原则,我们展示并评价了一个实用的原型编审系统。我们使用原型系统进行用户调查,以评估我们的范式的效用,并了解用户对有争议的查询的信息需求。

0
下载
关闭预览

相关内容

【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
System Safety and Artificial Intelligence
Arxiv
0+阅读 · 2022年2月18日
Metrics for Explainable AI: Challenges and Prospects
Arxiv
4+阅读 · 2018年12月11日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员