Panoptic scene understanding and tracking of dynamic agents are essential for robots and automated vehicles to navigate in urban environments. As LiDARs provide accurate illumination-independent geometric depictions of the scene, performing these tasks using LiDAR point clouds provides reliable predictions. However, existing datasets lack diversity in the type of urban scenes and have a limited number of dynamic object instances which hinders both learning of these tasks as well as credible benchmarking of the developed methods. In this paper, we introduce the large-scale Panoptic nuScenes benchmark dataset that extends our popular nuScenes dataset with point-wise groundtruth annotations for semantic segmentation, panoptic segmentation, and panoptic tracking tasks. To facilitate comparison, we provide several strong baselines for each of these tasks on our proposed dataset. Moreover, we analyze the drawbacks of the existing metrics for the panoptic tracking problem and propose a novel instance-centric metric that addresses the concerns. We present extensive experiments that demonstrate the utility of Panoptic nuScenes compared to existing datasets and make the online evaluation server available at \url{nuScenes.org}. We believe that this extension will accelerate the research of novel methods for scene understanding of dynamic urban environments.


翻译:光学场景了解和跟踪动态物剂对于机器人和自动飞行器在城市环境中航行至关重要。 由于LiDARs提供了准确的光化独立地貌描述,使用LiDAR点云执行这些任务提供了可靠的预测,然而,现有的数据集在城市场景类型上缺乏多样性,而且有数量有限的动态物体实例,阻碍了人们了解这些任务,也妨碍了对开发方法的可靠基准制定。在本文件中,我们引入了大规模泛光核Scenes基准数据集,该数据集扩展了我们广受欢迎的nuScenes数据集,并配有精明的地面图解图解,用于语义分割、全光分解和全光跟踪任务。为了便于比较,我们为拟议数据集中的每一项任务提供了几个强有力的基线。此外,我们分析了现有光学跟踪问题基准的图象,并提出了解决这些关切的新实例中心度度指标。我们介绍了广泛的实验,展示了与现有数据集相比Panvisenes基准数据集的实用性,并使在线评估服务器能够加速城市动态环境的扩展。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
52+阅读 · 2021年6月30日
专知会员服务
77+阅读 · 2021年3月16日
图像分割方法综述
专知会员服务
56+阅读 · 2020年11月22日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
全景分割这一年,端到端之路
机器之心
14+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
3D Object Tracking with Transformer
Arxiv
0+阅读 · 2021年10月28日
UPSNet: A Unified Panoptic Segmentation Network
Arxiv
4+阅读 · 2019年1月12日
VIP会员
相关资讯
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
全景分割这一年,端到端之路
机器之心
14+阅读 · 2018年12月24日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Top
微信扫码咨询专知VIP会员