Panoptic scene understanding and tracking of dynamic agents are essential for robots and automated vehicles to navigate in urban environments. As LiDARs provide accurate illumination-independent geometric depictions of the scene, performing these tasks using LiDAR point clouds provides reliable predictions. However, existing datasets lack diversity in the type of urban scenes and have a limited number of dynamic object instances which hinders both learning of these tasks as well as credible benchmarking of the developed methods. In this paper, we introduce the large-scale Panoptic nuScenes benchmark dataset that extends our popular nuScenes dataset with point-wise groundtruth annotations for semantic segmentation, panoptic segmentation, and panoptic tracking tasks. To facilitate comparison, we provide several strong baselines for each of these tasks on our proposed dataset. Moreover, we analyze the drawbacks of the existing metrics for the panoptic tracking problem and propose a novel instance-centric metric that addresses the concerns. We present extensive experiments that demonstrate the utility of Panoptic nuScenes compared to existing datasets and make the online evaluation server available at \url{nuScenes.org}. We believe that this extension will accelerate the research of novel methods for scene understanding of dynamic urban environments.
翻译:光学场景了解和跟踪动态物剂对于机器人和自动飞行器在城市环境中航行至关重要。 由于LiDARs提供了准确的光化独立地貌描述,使用LiDAR点云执行这些任务提供了可靠的预测,然而,现有的数据集在城市场景类型上缺乏多样性,而且有数量有限的动态物体实例,阻碍了人们了解这些任务,也妨碍了对开发方法的可靠基准制定。在本文件中,我们引入了大规模泛光核Scenes基准数据集,该数据集扩展了我们广受欢迎的nuScenes数据集,并配有精明的地面图解图解,用于语义分割、全光分解和全光跟踪任务。为了便于比较,我们为拟议数据集中的每一项任务提供了几个强有力的基线。此外,我们分析了现有光学跟踪问题基准的图象,并提出了解决这些关切的新实例中心度度指标。我们介绍了广泛的实验,展示了与现有数据集相比Panvisenes基准数据集的实用性,并使在线评估服务器能够加速城市动态环境的扩展。