Blowfish privacy is a recent generalisation of differential privacy that enables improved utility while maintaining privacy policies with semantic guarantees, a factor that has driven the popularity of differential privacy in computer science. This paper relates Blowfish privacy to an important measure of privacy loss of information channels from the communications theory community: min-entropy leakage. Symmetry in an input data neighbouring relation is central to known connections between differential privacy and min-entropy leakage. But while differential privacy exhibits strong symmetry, Blowfish neighbouring relations correspond to arbitrary simple graphs owing to the framework's flexible privacy policies. To bound the min-entropy leakage of Blowfish-private mechanisms we organise our analysis over symmetrical partitions corresponding to orbits of graph automorphism groups. A construction meeting our bound with asymptotic equality demonstrates tightness.
翻译:河豚隐私是最近对不同隐私的概括化,它既能改善使用,又能维护使用,同时提供语义保障,这是促使计算机科学中不同隐私受到欢迎的一个因素。本文将“河豚隐私”与通信理论界重要程度的隐私丧失信息渠道联系起来:细孔渗漏。 相邻输入数据的对称性是已知不同隐私和微孔渗漏之间联系的核心。 但是,虽然差异隐私显示出强烈的对称性,但“河豚的近邻关系与任意的简单图表相对应,因为框架的灵活隐私政策。要约束“河豚-私营机制”的微孔渗漏,我们组织对与图形自成形团体轨道相对应的对称分隔分析。 符合“无孔洞平等”界限的建筑显示了紧密性。