Deployable structures inspired by origami have provided lightweight, compact, and reconfigurable solutions for various robotic and architectural applications. However, creating an integrated structural system that can effectively balance the competing requirements of high packing efficiency, simple deployment, and precise morphing into multiple load-bearing configurations remains a significant challenge. This study introduces a new class of hyper-Yoshimura origami, which exhibits a wide range of kinematically admissible and locally metastable states, including newly discovered symmetric "self-packing" and asymmetric "pop-out" states. This metastability is achieved by breaking a design rule of Yoshimura origami that has been in place for many decades. To this end, this study derives a new set of mathematically rigorous design rules and geometric formulations. Based on this, forward and inverse kinematic strategies are developed to stack hyper-Yoshimura modules into deployable booms that can approximate complex 3D shapes. Finally, this study showcases the potential of hyper-Yoshimura with a meter-scale pop-up cellphone charging station deployed at our university's bus transit station, along with a 3D-printed, scaled prototype of a space crane that can function as an object manipulator, solar tracking device, or high-load-bearing structure. These results establish hyper-Yoshimura as a promising platform for deployable and adaptable robotic systems in both terrestrial and space environments.
翻译:暂无翻译