Understanding causal relationships in multivariate time series is crucial in many scenarios, such as those dealing with financial or neurological data. Many such time series exhibit multiple regimes, i.e., consecutive temporal segments with a priori unknown boundaries, with each regime having its own causal structure. Inferring causal dependencies and regime shifts is critical for analyzing the underlying processes. However, causal structure learning in this setting is challenging due to (1) non-stationarity, i.e., each regime can have its own causal graph and mixing function, and (2) complex noise distributions, which may be nonGaussian or heteroscedastic. Existing causal discovery approaches cannot address these challenges, since generally assume stationarity or Gaussian noise with constant variance. Hence, we introduce FANTOM, a unified framework for causal discovery that handles non-stationary processes along with non-Gaussian and heteroscedastic noises. FANTOM simultaneously infers the number of regimes and their corresponding indices and learns each regime's Directed Acyclic Graph. It uses a Bayesian Expectation Maximization algorithm that maximizes the evidence lower bound of the data log-likelihood. On the theoretical side, we prove, under mild assumptions, that temporal heteroscedastic causal models, introduced in FANTOM's formulation, are identifiable in both stationary and non-stationary settings. In addition, extensive experiments on synthetic and real data show that FANTOM outperforms existing methods.


翻译:理解多元时间序列中的因果关系在许多场景中至关重要,例如处理金融或神经科学数据的场景。许多此类时间序列表现出多模态特性,即具有先验未知边界的连续时间片段,每个模态都拥有自身的因果结构。推断因果依赖关系和模态转换对于分析底层过程极为关键。然而,该场景下的因果结构学习面临两大挑战:(1) 非平稳性,即每个模态可能具有独立的因果图和混合函数;(2) 复杂的噪声分布,可能呈现非高斯性或异方差性。现有因果发现方法因通常假设平稳性或恒定方差的高斯噪声,无法应对这些挑战。为此,我们提出FANTOM——一个能够处理非平稳过程及非高斯/异方差噪声的统一因果发现框架。FANTOM可同步推断模态数量及其对应索引,并学习每个模态的有向无环图。该框架采用贝叶斯期望最大化算法,通过最大化数据对数似然的证据下界实现优化。在理论层面,我们证明在温和假设下,FANTOM框架中提出的时序异方差因果模型在平稳与非平稳场景下均具有可识别性。此外,在合成数据与真实数据上的大量实验表明,FANTOM的性能优于现有方法。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关资讯
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员