Oriented object detection is a practical and challenging task in remote sensing image interpretation. Nowadays, oriented detectors mostly use horizontal boxes as intermedium to derive oriented boxes from them. However, the horizontal boxes are inclined to get a small Intersection-over-Unions (IoUs) with ground truths, which may have some undesirable effects, such as introducing redundant noise, mismatching with ground truths, detracting from the robustness of detectors, etc. In this paper, we propose a novel Anchor-free Oriented Proposal Generator (AOPG) that abandons the horizontal boxes-related operations from the network architecture. AOPG first produces coarse oriented boxes by Coarse Location Module (CLM) in an anchor-free manner and then refines them into high-quality oriented proposals. After AOPG, we apply a Fast R-CNN head to produce the final detection results. Furthermore, the shortage of large-scale datasets is also a hindrance to the development of oriented object detection. To alleviate the data insufficiency, we release a new dataset on the basis of our DIOR dataset and name it DIOR-R. Massive experiments demonstrate the effectiveness of AOPG. Particularly, without bells and whistles, we achieve the highest accuracy of 64.41$\%$, 75.24$\%$ and 96.22$\%$ mAP on the DIOR-R, DOTA and HRSC2016 datasets respectively. Code and models are available at https://github.com/jbwang1997/AOPG.


翻译:定向物体探测是遥感图像判读方面的一项实际而具有挑战性的任务。如今,定向探测器主要使用横向箱作为中间介质,从中取出方向的箱。然而,横向箱倾向于获得一个小型的跨交统(IoUs),具有地面真相,可能会产生一些不良效果,例如引入多余的噪音,与地面真相不匹配,减损探测器的坚固性等。在本文件中,我们提议建立一个新型无锁无锁的Orentific Prosution 生成器(AOPG),放弃网络结构中与横向箱有关的操作。AOPG首先以无锚方式由 Coarse 定位模块(CLM)生产粗金箱,然后将其改进为高质量的定向建议。在AOPG之后,我们使用快速R-CN头来产生最后的检测结果。此外,大型数据集的短缺也阻碍了定向物体探测的开发。为了减轻数据不足,我们根据我们的DIOR数据集和名称发布了一个新的数据集。 ASODO-RO-RO-RO-RO-RO-M 和S AS 最高数据检测效果。

0
下载
关闭预览

相关内容

目标检测,也叫目标提取,是一种与计算机视觉和图像处理有关的计算机技术,用于检测数字图像和视频中特定类别的语义对象(例如人,建筑物或汽车)的实例。深入研究的对象检测领域包括面部检测和行人检测。 对象检测在计算机视觉的许多领域都有应用,包括图像检索和视频监视。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
32+阅读 · 2021年9月16日
【CVPR2021】通道注意力的高效移动网络设计
专知会员服务
18+阅读 · 2021年4月27日
【CVPR2021】用于目标检测的通用实例蒸馏
专知会员服务
23+阅读 · 2021年3月22日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
专知会员服务
109+阅读 · 2020年3月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
详解目标检测(MMdetection)-HOOK机制
极市平台
9+阅读 · 2020年9月22日
已删除
将门创投
4+阅读 · 2020年1月6日
CornerNet: Detecting Objects as Paired Keypoints 论文笔记
统计学习与视觉计算组
7+阅读 · 2018年9月27日
ECCV 2018 | CornerNet:目标检测算法新思路
极市平台
13+阅读 · 2018年8月11日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Arxiv
9+阅读 · 2021年3月3日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
4+阅读 · 2016年12月29日
VIP会员
相关论文
Arxiv
9+阅读 · 2021年3月3日
EfficientDet: Scalable and Efficient Object Detection
Arxiv
6+阅读 · 2019年11月20日
Clustered Object Detection in Aerial Images
Arxiv
5+阅读 · 2019年8月27日
Arxiv
11+阅读 · 2019年4月15日
Arxiv
11+阅读 · 2019年1月24日
Arxiv
5+阅读 · 2018年4月17日
Arxiv
4+阅读 · 2016年12月29日
Top
微信扫码咨询专知VIP会员