We prove a general Mosco convergence theorem for bounded Euclidean domains satisfying a set of mild geometric hypotheses. For bounded domains, this notion implies norm-resolvent convergence for the Dirichlet Laplacian which in turn ensures spectral convergence. A key element of the proof is the development of a novel, explicit Poincar\'e-type inequality. These results allow us to construct a universal algorithm capable of computing the eigenvalues of the Dirichlet Laplacian on a wide class of rough domains. Many domains with fractal boundaries, such as the Koch snowflake and certain filled Julia sets, are included among this class. Conversely, we construct a counter example showing that there does not exist a universal algorithm of the same type capable of computing the eigenvalues of the Dirichlet Laplacian on an arbitrary bounded domain.
翻译:我们证明Mosco对封闭的欧洲大陆域的统合理论符合一套温度几何假设。 对于封闭的域,这个概念意味着Drichlet Laplaceian的规范-解脱趋同,这反过来又能确保光谱趋同。证据的一个关键要素是开发出一种新颖的、明确的Poincar\'e型的不平等。这些结果使我们能够构建一种通用算法,能够将Dirichlet Laplacian的精华值计算在广泛的粗糙域。许多有分形界限的域,如Koch雪花和某些填满的Julia组,都包含在这一类中。相反,我们构建了一个反例,表明不存在一种能够任意封闭域计算Dirich Laplaceian的精华值的同一类型通用算法。