In recent years, anomaly events detection in crowd scenes attracts many researchers' attention, because of its importance to public safety. Existing methods usually exploit visual information to analyze whether any abnormal events have occurred due to only visual sensors are generally equipped in public places. However, when an abnormal event in crowds occurs, sound information may be discriminative to assist the crowd analysis system to determine whether there is an abnormality. Compare with vision information that is easily occluded, audio signals have a certain degree of penetration. Thus, this paper attempt to exploit multi-modal learning for modeling the audio and visual signals simultaneously. To be specific, we design a two-branch network to model different types of information. The first is a typical 3D CNN model to extract temporal appearance features from video clips. The second is an audio CNN for encoding Log Mel-Spectrogram of audio signals. Finally, by fusing the above features, a more accurate prediction will be produced. We conduct the experiments on SHADE dataset, a synthetic audio-visual dataset in surveillance scenes, and find introducing audio signals effectively improves the performance of anomaly events detection and outperforms other state-of-the-art methods. Furthermore, we will release the code and the pre-trained models as soon as possible.


翻译:近年来,人群场异常事件的探测吸引了许多研究人员的注意,因为它对公众安全很重要。现有方法通常利用视觉信息分析是否发生异常事件,因为只有视觉传感器才造成异常事件。但是,在人群中发生异常事件时,声音信息可能具有歧视性,有助于人群分析系统确定是否存在异常现象。与易于隐蔽的视觉信息相比,音频信号具有某种程度的渗透力。因此,本文件试图利用多模式学习,同时模拟视听信号。具体地说,我们设计一个两管网络来模拟不同类型的信息。第一种是典型的3DCNN模式,从视频剪辑中提取时间外观特征。第二种是用于调制成日志Mel-Spectrography音信号的音频CNNN。最后,通过使用上述特征,将产生更准确的预测。我们在监控场进行SHADE数据集实验,一个合成的视听数据集,并发现引入音频信号可以有效改进异常事件探测的性能,并超越其他状态前的代码发布方法。此外,我们很快将开发其他的代码。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
16+阅读 · 2021年3月2日
Learning Memory-guided Normality for Anomaly Detection
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Object Detection in 20 Years: A Survey
Arxiv
48+阅读 · 2019年5月13日
Deep Learning for Generic Object Detection: A Survey
Arxiv
13+阅读 · 2018年9月6日
VIP会员
相关VIP内容
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员