Computational fluid dynamic simulations often produce large clusters of finite elements with non-trivial, non-convex boundaries and uneven distributions among compute nodes, posing challenges to compositing during interactive volume rendering. Correct, in-place visualization of such clusters becomes difficult because viewing rays straddle domain boundaries across multiple compute nodes. We propose a GPU-based, scalable, memory-efficient direct volume visualization framework suitable for in~situ and post~hoc usage. Our approach reduces memory usage of the unstructured volume elements by leveraging an exclusive or-based index reduction scheme and provides fast ray-marching-based traversal without requiring large external data structures built over the elements themselves. Moreover, we present a GPU-optimized deep compositing scheme that allows correct order compositing of intermediate color values accumulated across different ranks that works even for non-convex clusters. Our method scales well on large data-parallel systems and achieves interactive frame rates during visualization. We can interactively render both Fun3D Small Mars Lander (14 GB / 798.4 million finite elements) and Huge Mars Lander (111.57 GB / 6.4 billion finite elements) data sets at 14 and 10 frames per second using 72 and 80 GPUs, respectively, on TACC's Frontera supercomputer.
翻译:计算流体动态模拟往往产生大量数量有限的元素群,这些元素在非三边、非convex边界和计算节点之间的分布不均,给在交互体积转换过程中进行配置带来了挑战。 正确、 本地的这些集群的可视化变得很困难, 因为通过多个计算节点来查看射线横贯的域界线。 我们提议了一个适合在目前和之后使用 GPU 的基于 GPU、 可缩放、 记忆高效的直接量可视化框架。 我们的方法通过利用一个独家或基于指数的减少计划来减少非结构化体积元素的记忆用量, 并提供快速的光谱- 以总体为基的曲折曲, 而无需在元素本身上建立大型外部数据结构。 此外, 我们提出了一个GPU- 优化的深度组合计划, 能够正确排列不同级别累积的中间颜色值的顺序, 甚至适用于非Convex 组群集。 我们在大型数据-parel 系统上采用的方法比例, 并在视觉化过程中实现互动框架率。 我们可以用互动的方式将火星Sum- 3D Smal Lom Lander(14 GB/G- 798) 和G- hard 10- 6. 和G- hard 和G- hard 4 和G- hard 10- hard 和G- hard- g- g- hard- g) 4) 和 G.