Computational fluid dynamic simulations often produce large clusters of finite elements with non-trivial, non-convex boundaries and uneven distributions among compute nodes, posing challenges to compositing during interactive volume rendering. Correct, in-place visualization of such clusters becomes difficult because viewing rays straddle domain boundaries across multiple compute nodes. We propose a GPU-based, scalable, memory-efficient direct volume visualization framework suitable for in~situ and post~hoc usage. Our approach reduces memory usage of the unstructured volume elements by leveraging an exclusive or-based index reduction scheme and provides fast ray-marching-based traversal without requiring large external data structures built over the elements themselves. Moreover, we present a GPU-optimized deep compositing scheme that allows correct order compositing of intermediate color values accumulated across different ranks that works even for non-convex clusters. Our method scales well on large data-parallel systems and achieves interactive frame rates during visualization. We can interactively render both Fun3D Small Mars Lander (14 GB / 798.4 million finite elements) and Huge Mars Lander (111.57 GB / 6.4 billion finite elements) data sets at 14 and 10 frames per second using 72 and 80 GPUs, respectively, on TACC's Frontera supercomputer.


翻译:计算流体动态模拟往往产生大量数量有限的元素群,这些元素在非三边、非convex边界和计算节点之间的分布不均,给在交互体积转换过程中进行配置带来了挑战。 正确、 本地的这些集群的可视化变得很困难, 因为通过多个计算节点来查看射线横贯的域界线。 我们提议了一个适合在目前和之后使用 GPU 的基于 GPU、 可缩放、 记忆高效的直接量可视化框架。 我们的方法通过利用一个独家或基于指数的减少计划来减少非结构化体积元素的记忆用量, 并提供快速的光谱- 以总体为基的曲折曲, 而无需在元素本身上建立大型外部数据结构。 此外, 我们提出了一个GPU- 优化的深度组合计划, 能够正确排列不同级别累积的中间颜色值的顺序, 甚至适用于非Convex 组群集。 我们在大型数据-parel 系统上采用的方法比例, 并在视觉化过程中实现互动框架率。 我们可以用互动的方式将火星Sum- 3D Smal Lom Lander(14 GB/G- 798) 和G- hard 10- 6. 和G- hard 和G- hard 4 和G- hard 10- hard 和G- hard- g- g- hard- g) 4) 和 G.

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
124+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
专知会员服务
59+阅读 · 2020年3月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月2日
Arxiv
0+阅读 · 2022年11月2日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员