We study the problem of partitioning a given simple polygon $P$ into a minimum number of polygonal pieces, each of which has bounded size. We give algorithms for seven notions of `bounded size,' namely that each piece has bounded area, perimeter, straight-line diameter, geodesic diameter, or that each piece must be contained in a unit disk, an axis-aligned unit square or an arbitrarily rotated unit square. A more general version of the area problem has already been studied. Here we are, in addition to $P$, given positive real values $a_1,\ldots,a_k$ such that the sum $\sum_{i=1}^k a_i$ equals the area of $P$. The goal is to partition $P$ into exactly $k$ pieces $Q_1,\ldots,Q_k$ such that the area of $Q_i$ is $a_i$. Such a partition always exists, and an algorithm with running time $O(nk)$ has previously been described, where $n$ is the number of corners of $P$. We give an algorithm with optimal running time $O(n+k)$. For polygons with holes, we get running time $O(n\log n+k)$. For the other problems, it seems out of reach to compute optimal partitions for simple polygons; for most of them, even in extremely restricted cases such as when $P$ is a square. We therefore develop $O(1)$-approximation algorithms for these problems, which means that the number of pieces in the produced partition is at most a constant factor larger than the cardinality of a minimum partition. Existing algorithms do not allow Steiner points, which means that all corners of the produced pieces must also be corners of $P$. This has the disappointing consequence that a partition does often not exist, whereas our algorithms always produce useful partitions. Furthermore, an optimal partition without Steiner points may require $\Omega(n)$ pieces for polygons where a partition consisting of just $2$ pieces exists when Steiner points are allowed.


翻译:我们研究将给定的简单多边方元P$分割成一个最小数的多边形块的问题, 每种多边方元的大小都存在。 我们给出了7个“ 限制大小” 概念的算法, 即每块的界限区域、 周界、 直径直线直径、 或每块必须包含在单位盘中, 轴对齐的单位方形或任意旋转的单位方形中。 已经研究了一个更普遍的区域问题版本 。 除了美元外, 我们这里还有正值 $_ 1,\ ldots, a_k$, a... 我们给出了正数的正数 $ 1, 美元=k a 。 目标是要将美元分割成正数 $ 1,\\\\ doldots, 美元区域的面积区域区域区域是 $_a_ 。 这种分区总是存在, 而一个算得时间的算法, 美元是至少是 $ 美元 。 因此, 我们用一个极数的硬数算算算 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年12月21日
Arxiv
0+阅读 · 2022年12月20日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员