We study properties of confidence intervals (CIs) for the difference of two Bernoulli distributions' success parameters, $p_x - p_y$, in the case where the goal is to obtain a CI of a given half-width while minimizing sampling costs when the observation costs may be different between the two distributions. Assuming that we are provided with preliminary estimates of the success parameters, we propose three different methods for constructing fixed-width CIs: (i) a two-stage sampling procedure, (ii) a sequential method that carries out sampling in batches, and (iii) an $\ell$-stage "look-ahead" procedure. We use Monte Carlo simulation to show that, under diverse success probability and observation cost scenarios, our proposed algorithms obtain significant cost savings versus their baseline counterparts (up to 50\% for the two-stage procedure, up to 15\% for the sequential methods). Furthermore, for the battery of scenarios under study, our sequential-batches and $\ell$-stage "look-ahead" procedures approximately obtain the nominal coverage while also meeting the desired width requirement. Our sequential-batching method turned out to be more efficient than the "look-ahead" method from a computational standpoint, with average running times at least an order-of-magnitude faster over all the scenarios tested.
翻译:我们研究两个伯努利分配成功参数差异的置信间隔(CIs)的特性,即,如果目标是在两种分布的观察费用不同的情况下获得一个半宽的CI,同时尽量减少取样费用,那么我们研究两个伯努利分配成功参数的差异($p_x-p_y$),假设我们得到对成功参数的初步估计,我们建议了三种不同的方法来建造固定宽的CIs:(一) 两阶段抽样程序,(二) 分批取样的顺序方法,(三) 一级“外观”程序。我们利用蒙特卡洛模拟来显示,在不同的成功概率和观察成本假设下,我们提议的算法相对于基线对应方(两阶段程序最多可节省50 ⁇,顺序方法最多15 ⁇ ),大大节省了成本。此外,对于正在研究的情景的电池,我们的按顺序划分和每阶段“外观”程序,大约获得标称的覆盖,同时满足了预期的宽度要求。我们从连续的测序方法到最短的测序,从一个平均测算方法到一个最有效率的顺序。